

SMAP (Soil Moisture Active & Passive) Mission Concept/Cost Assessment Study

Eastwood Im

(Representing the JPL SMAP Assessment Study Team)

07/9-10/2007

SMAP Mission Study Overview

- After the release of the NRC Earth Science Decadal Survey Report, NASA requested JPL to conduct an assessment of the SMAP mission design maturity, implementation readiness, and cost realism
- JPL Assessment Team & Resources:
 - Study Lead: Eastwood Im (CloudSat Instrument Manager)
 - Selected members of the JPL Mission Systems Concept Section and Radar Science and Engineering Section
 - JPL Advanced Project Design Center (TeamX) tools and resources

Approach:

- Reviewed technical and implementation content and applicability of the ESSP Hydros mission (which addresses the core science objectives of SMAP)
- Conducted TeamX mission design studies
- Cross-compared and reconciled TeamX results, Hydros baseline, several cost models, and relevant components of the Aquarius mission payload
- Documented findings
- Report sent to NASA on 6/15/07

SMAP Mission Study: Key Findings

- The core science objectives and requirements of the SMAP mission (those on soil moisture and freeze/thaw) are similar to those addressed by the ESSP Hydros mission. Therefore, SMAP can take advantage of the work performed in the past several years for Hydros
- SMAP instruments (L-band radar and radiometer electronics) has significant design heritage from Aquarius. SMAP instrument cal/val can also take advantage of the Aquarius experience
- SMAP mission is consistent with the cost estimate given in the NRC report
 - SMAP mission cost estimate does not assume the Hydros-type partnership contributions
- SMAP mission design/technology are mature. It is ready to begin formulation
- Although the design maturity comes from the stability of the core science objectives, mission operations can be adjusted to accommodate opportunistic science.

SMAP Mission Summary

Science Measurements

- Measure soil moisture and freeze-thaw state
- 2-3 days global revisit

Mission Objectives

- First dedicated soil-moisture and freeze/thaw mission using L-band active/passive combination
- Provide soil-moisture observations to the NPOESS community

Mission Overview

- Launch Date: January 2013
- · Launch Vehicle: Taurus-class
- Mission life of 3 years*
- Sun-synchronous dawn/dusk orbit,
 670 km altitude
- Estimated cost** is in the \$350M to \$400M range (in FY07\$)

Instruments

- L-band radar and radiometer system with offsetfed 6-m deployable mesh reflector rotating about nadir axis
- Unfocused synthetic aperture processing provides higher resolution radar measurements
- * Hydros mission life: 2 years
- ** Decadal Survey rough cost estimate: \$300M ± 50% (in FY06\$)

07/9-10/2007

Design Maturity

SMAP Observatory Mass

Spacecraft Bus 302 kg
Required Fuel Load 33 kg
Instrument 189 kg
Space Vehicle Total 524 kg

Taurus Capability 775 kg

Mass Margin 251 kg (33%)

Key SMAP Resources

System Power

Attitude Control

Attitude Knowledge
Instrument Momentum
High-res Data Storage
Low-res Data Storage
On-board Data Rate

866 W (34%)
0.1 (36%)
0.03 (36%)
100 Nms (50%)
100 Gbit (100%)
10 Gbit (6.7X)

Development - phase A-D: 5 years

Phase A start: January 2008

• PDR: July 2009

• CDR: July 2010

Launch: January 2013

Adequate schedule reserve (costed)

Operations: 3 years

Requirement/design maturity and heritage from Hydros enable an early project start, leading to science data acquisition beginning in early 2013.

Next Steps Toward Baseline Mission as Identified by the Mission Study Team

Mission design studies

- Verify battery, solar array, radiation effects for a 3-year baseline mission (and 6-year consumables)
 - Hydros operations phase was planned for two-years

Spacecraft selection

- Single S/C supplier selected as partner on ESSP Hydros
- Hydros vendor option still viable, but evaluation of other vendors' capabilities is recommended

Antenna selection

- Two deployable antenna concepts from separate vendors shown feasible for Hydros.
- For SMAP, this study team recommends:
 - Down-selection to single antenna vendor
 - Perform additional dynamics studies to validate model fidelity

Investigate joint partnership opportunities

Exploring Enhanced Science and Applications Enabled by SMAP

- SMAP is defined as a Soil Moisture and Freeze/Thaw mission but the NRC also recognized its potential for contributing to other science areas.
- The previous slides discussed a mission that can deliver SMAP core science products for a cost consistent with the decadal survey estimate.
- In the reminder of this presentation, we will present scenarios by which SMAP can be augmented to enable additional/opportunistic science and applications without altering the core science objectives.
 - Enhanced data acquisition scenario
 - Additional data products

Extracted from NRC ES Decadal Survey Report

Where possible within budget constraints, the augmentation of the specified set of science observations with additional desired observables should be considered; however, NASA and the scientific community must avoid "requirement creep" and the subsequent damaging cost growth.

Baseline Data Acquisition Scenario

- Low-resolution radar and radiometer data acquisition throughout 360° scan (~1000 km contiguous swath)
- High-resolution radar data are acquired in left and right portions of forward scan when the following conditions are met:
 - Swath covers land (Antarctica excluded)
 - Local time is close to 6 am (reduced ionospheric interference effects)

3 orbits coverage

Examples of Potential SMAP Enhancements/Augmentations

- High-resolution Radar Coverage
 - Increased high-res data coverage may be desirable for enhanced science.

	Baseline ⁽¹⁾	Enhancement	Data volume increase ⁽²⁾	Science benefit of enhancement
Portion of scan	< half scan	Close to full scan	x 2	Workshop
Portion of orbit	AM	AM and PM	x 2	
Target mask	Land only	Land and Ocean	x 3	

- Increased data-volume affects on-board data storage, downlink and ground station capabilities.
- Improved data latency/reliability
- Additional standard data products for enhanced science
- (1) The baseline is defined as the scenario that meets the core science requirements (soil moisture and freeze/thaw).
- (2) More details will be discussed at the breakout session.

Near-term Trades and Study Tasks for Enhanced Science / Applications

Workshop

- Discuss and document benefit vs. added complexity of potential enhancements/augmentations to SMAP core mission
- Recommend and prioritize enhancements/augmentations

Post-Workshop studies

 Analyze and document cost impact of accommodating recommended enhancement/augmentation into core mission design

Investigate joint partnership opportunities